SPECIFICATIONS FOR APPROVAL

Vertical UV-A Chip

MODEL NAME: LEUV-V618A6

Halogen Compliant

TABLE OF CONTENTS

1. Features	 3
2. Applications	 3
3. Mechanical Dimensions	 3
4. Absolute Maximum Ratings	 4
5. Electrical / Optical Characteristics	 4
6. Mechanical Specifications	 4
7. Standard Binning Table	 5
8. Typical Characteristic Curves	 6
9. Packing and Labeling	 8
10. Cautions on Use	 10

1. Features

- AlGaN/InGaN-based thin-film vertical LED chip technology
- · High brightness and efficiency
- · Excellent thermal management capability with metal alloy support
- · Compatible with silver epoxy, solder paste, solder preform, or eutectic attach
- · Long operation lifetime
- · Lambertian radiation

2. Applications

- · UV curing system
- · UV inspection system
- · Industrial machine vision system
- · Photolithography system

3. Mechanical Dimensions

• Chip size : 1100 x 1100 $\pm 50 \mu m$

• P-N Junction size : 1050 x 1050 $\pm 50 \mu m$

• Total thickness : 130 \pm 20 μ m • Bond pad : Φ 160 \pm 20 μ m

· Backside metallization with Gold

Top View

Bottom View

Cross Section

1100x1100±50

1950x1050±50

P - Pad
(Φ160±20)

Backside Metallization

4. Absolute Maximum Ratings (Ta = 25 °C) Note 1

Items	Symbols	Rating	Unit
DC Forward Current Note 2	If	1000	mA
Peak Forward Current Note 3	lfp	1000	mA
LED Junction Temperature	Tj	130	$^{\circ}$
Reverse Voltage	Vr	5	V
Operating Temperature		-10 ~ 100	℃
Storage Temperature (Bare Chip)		-40 ~ 100	$^{\circ}$
Assembly Processing Temperature		325 (< 5sec)	°C

5. Electrical / Optical Characteristics (Ta = 25 °C)

Items	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	Vf	500mA	3.4		4.0	V
Turn-On Voltage	Von	0.5mA	2.3		3.1	V
Peak Wavelength Note 4	Wp	500mA	360		370	nm
Radiant Flux Note 5	Po	500mA	560		800	mW

6. Mechanical Specifications

Items	Dimension	Tolerance	Unit
Chip Area	1100 x 1100	±50	
P-N Junction Area	1050 x 1050	±50	
Chip Thickness	130	±20	um
Bond Pad	Ф160	±20	μm
Backside Metal Area	1100 x 1100	±50	
Backside Metal Thickness	0.4	±0.04	

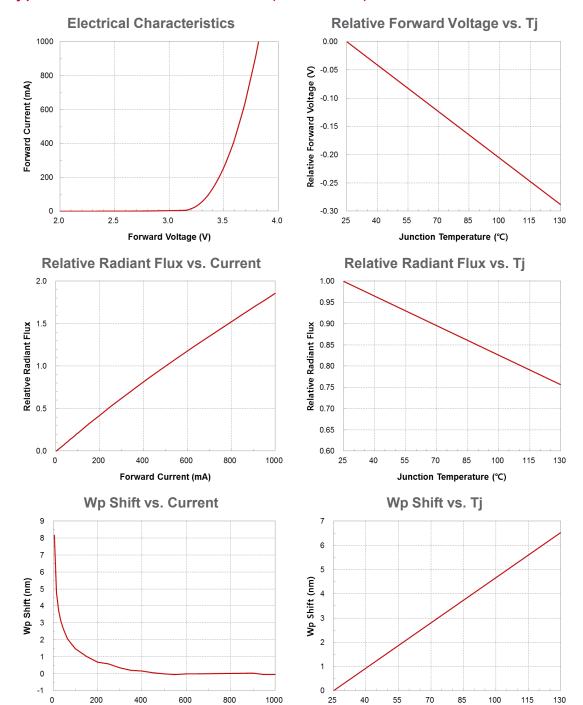
Notes:

- 1. Maximum ratings are strongly package-dependent. The above ratings were determined using a LGIT SMT package and Ag epoxy die attach for characterization. Ratings for other packages may differ.
- 2. Under the maximum junction temperature
- 3. 1/10 duty cycle @ 1 kHz
- 4. Wavelength tolerance is within ± 1 nm.
- 5. Radiant flux is based on LGIT internal standard of the optical measurement and may differ from that measured by the

7. Standard Binning Table (If = 500mA, Ta = $25\,^{\circ}$ C) Note 1

Wp	Forward	Radiant Flux (mW)					
(@500mA)	Voltage (V)	560~600	600~640	640~680	680~720	720~760	760~800
360~370	3.4 ~ 3.5	X01	X02	X03	X04	X05	X06
	3.5 ~ 3.6	X07	X08	X09	X10	X11	X12
	3.6 ~ 3.7	X13	X14	X15	X16	X17	X18
	3.7 ~ 3.8	X19	X20	X21	X22	X23	X24
	3.8 ~ 3.9	X25	X26	X27	X28	X29	X30
	3.9 ~ 4.0	X31	X32	X33	X34	X35	X36

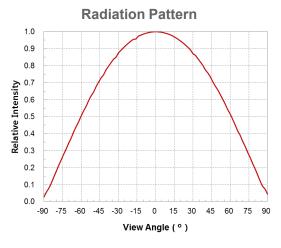
※ Peak Wavelength: 360~370nm

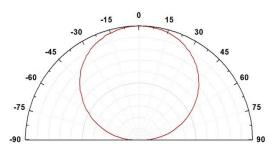

Notes:

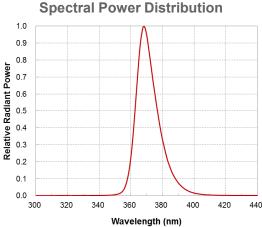
1. LEDs from above ranks will be shipped.

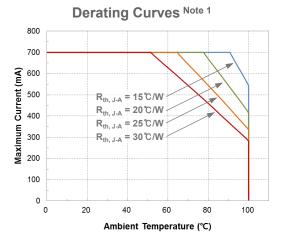
The rank combination ratio per shipment will be decided by LG innotek.

8. Typical Characteristic Curves (Ta = 25 °C)



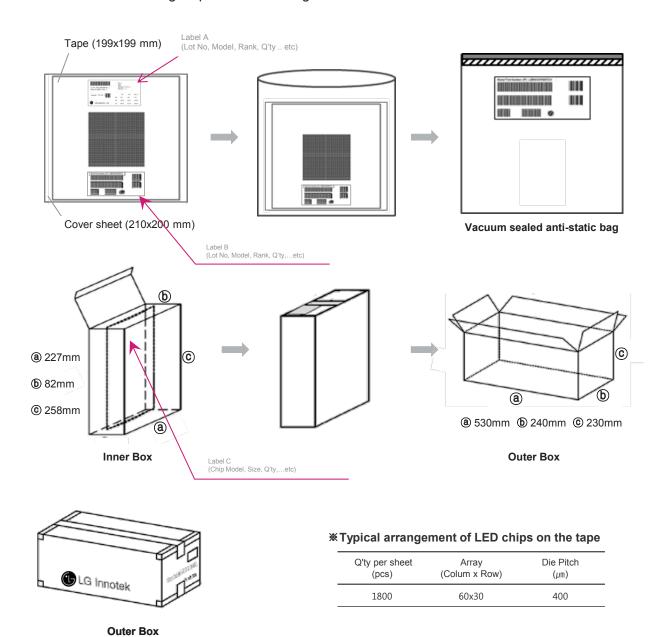



Junction Temperature (°C)


Forward Current (mA)

Notes:

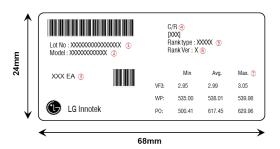
1. The maximum forward current is determined by the thermal resistance (R_{J-A}) between the LED junction and ambient.



9. Packing and Labeling

Packing

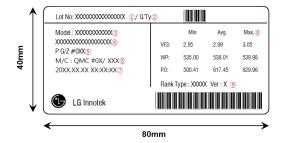
LED chips are mounted on the adhesive tapes and contamination-free cover sheet with a square array. Those sheets are contained into an anti-electrostatic moisture-proof bag with desiccants (silica gel) and the bag is sealed off. Four bags are packed into a inner box and six inner boxes are again packed into a large outer box.



Labeling

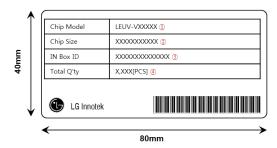
Label A

Specifying 'Lot Number ①', 'Model Number ②', 'Quantity ③' 'MRM Code ④', 'Rank type ⑤', 'Rank Ver ⑥' and 'Summary of Bin Characteristic ⑦'.



Label B

Specifying 'Lot Number 1)', Quantity 2)', "Model Number 3)', 'Chip size 4)'


'Growth Number 5', 'Manufacturing Machine Number 6', 'Date 7',

'Summary of Bin Characteristic ®' and 'Rank type and Ver. 9'.

Label C

Specifying 'Chip Model 1)', Chip Size 2)', 'IN Box ID 3)' and 'Total Q'ty 4)'.

Box ID Indication

10. Cautions on Use

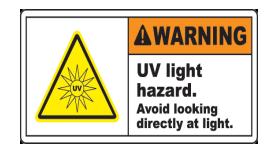
Storage Environment

- The storage location should be kept at normal temperature and humidity, that is 25 to 35 °C and 45 to 70% relative humidity. Care must be taken to avoid storage under temperature and humidity conditions that are significantly different from these.
- Avoid storage in a location with corrosive gas or a large amount of dust.
- Sudden temperature variations can cause condensation to form on devices and/or packing material, so avoid such an environment.
- Store devices in a location with free of radiation, static electricity and strong electromagnetic fields.

Electrostatic Discharge (ESD) Damage

- Caution is necessary in handling LED chips since they are generally susceptible to destruction due to electrostatic discharge.
- · All equipment and human bodies must be properly grounded.
- Use wrist strap or anti-electrostatic gloves when manually handling the chips.
- It is recommended to use an ionizer (an air-ionizing blower) in handling the chips or the manufacturing processes.

Handling Precautions


- Minimize contact between metallic fixtures, tweezers, or other hard objects and the emitting surface. Applying excessive contact force can damage the junction and lead to increased leakage current as a consequence.
- If possible, avoid the use of tapes or adhesives to the emitting surface which is subject to be contaminated by tape residue. Contaminated surface leads to reduced light extraction.
- Rubber collets are strongly recommended during the die pick and place process. Harder plastic collets may also be used with minimized die bonding parameters (bonding pressure).
- Recommended minimum tip radius of ejector pins contacting the bottom surface of the chip during the die pick process is 75µm in order to prevent chip damage.
- Gold ball bonding is recommended as an electrical connection. Wire bonding parameters (pressure and ultrasonic power) should be chosen to prevent excess stress from damaging the bond pad and chip.

 When UV-Chip is in contact with an electric current, UV Light is emitted, which may cause severe damage to the bare skin or eyes. When handling the product, one must use protective wear to protect bare skin. Protective UV-goggles must be worn to prevent harm to the eyes.

Others

- LG Innotek will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit if use to exceed the absolute maximum rations. Or not keep the matters that demand special attention.
- The customer shall not reverse engineer by disassembling or analysis of the LEDs without having prior written consent from LG Innotek. When defective LEDs are found, the customer shall inform LG Innotek disassembling or analysis.
- The appearance and specification of the product may be modified for improvement without notice.

